Maps preserving the nilpotency of products of operators
نویسندگان
چکیده
Let B(X) be the algebra of all bounded linear operators on the Banach space X, and let N (X) be the set of nilpotent operators in B(X). Suppose φ : B(X)→ B(X) is a surjective map such that A,B ∈ B(X) satisfy AB ∈ N (X) if and only if φ(A)φ(B) ∈ N (X). If X is infinite dimensional, then there exists a map f : B(X)→ C \ {0} such that one of the following holds: (a) There is a bijective bounded linear or conjugate-linear operator S : X → X such that φ has the form A 7→ S[f(A)A]S−1. (b) The space X is reflexive, and there exists a bijective bounded linear or conjugate-linear operator S : X ′ → X such that φ has the form A 7→ S[f(A)A′]S−1. If X has dimension n with 3 ≤ n <∞, and B(X) is identified with the algebra Mn of n× n complex matrices, then there exist a map f : Mn → C \ {0}, a field automorphism ξ : C → C, and an invertible S ∈Mn such that φ has one of the following forms: A = [aij ] 7→ f(A)S[ξ(aij)]S or A = [aij ] 7→ f(A)S[ξ(aij)]S, where A denotes the transpose of A. The results are extended to the product of more than two operators and to other types of products on B(X) including the Jordan triple product A ∗B = ABA. Furthermore, the results in the finite dimensional case are used to characterize surjective maps on matrices preserving the spectral radius of products of matrices. AMS classification: 47B49.
منابع مشابه
Additive Maps Preserving Idempotency of Products or Jordan Products of Operators
Let $mathcal{H}$ and $mathcal{K}$ be infinite dimensional Hilbert spaces, while $mathcal{B(H)}$ and $mathcal{B(K)}$ denote the algebras of all linear bounded operators on $mathcal{H}$ and $mathcal{K}$, respectively. We characterize the forms of additive mappings from $mathcal{B(H)}$ into $mathcal{B(K)}$ that preserve the nonzero idempotency of either Jordan products of operators or usual produc...
متن کاملOn strongly Jordan zero-product preserving maps
In this paper, we give a characterization of strongly Jordan zero-product preserving maps on normed algebras as a generalization of Jordan zero-product preserving maps. In this direction, we give some illustrative examples to show that the notions of strongly zero-product preserving maps and strongly Jordan zero-product preserving maps are completely different. Also, we prove that the direct p...
متن کاملAdditivity of maps preserving Jordan $eta_{ast}$-products on $C^{*}$-algebras
Let $mathcal{A}$ and $mathcal{B}$ be two $C^{*}$-algebras such that $mathcal{B}$ is prime. In this paper, we investigate the additivity of maps $Phi$ from $mathcal{A}$ onto $mathcal{B}$ that are bijective, unital and satisfy $Phi(AP+eta PA^{*})=Phi(A)Phi(P)+eta Phi(P)Phi(A)^{*},$ for all $Ainmathcal{A}$ and $Pin{P_{1},I_{mathcal{A}}-P_{1}}$ where $P_{1}$ is a nontrivial projection in $mathcal{A...
متن کاملA characterization of orthogonality preserving operators
In this paper, we characterize the class of orthogonality preserving operators on an infinite-dimensional Hilbert space $H$ as scalar multiples of unitary operators between $H$ and some closed subspaces of $H$. We show that any circle (centered at the origin) is the spectrum of an orthogonality preserving operator. Also, we prove that every compact normal operator is a strongly orthogo...
متن کاملEla Linear Maps Preserving the Idempotency of Jordan Products of Operators
Let B(X ) be the algebra of all bounded linear operators on a complex Banach space X and let I(X ) be the set of non-zero idempotent operators in B(X ). A surjective map φ : B(X ) → B(X ) preserves nonzero idempotency of the Jordan products of two operators if for every pair A, B ∈ B(X ), the relation AB + BA ∈ I(X ) implies φ(A)φ(B) + φ(B)φ(A) ∈ I(X ). In this paper, the structures of linear s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006